본문 바로가기

도서 리뷰

도서 리뷰 : AutoML 인 액션


"한빛미디어 <나는 리뷰어다> 활동을 위해서 책을 제공받아 작성된 서평입니다."


AutoML 인 액션

 

이번에 리뷰할 도서는 "AutoML 인 액션" 입니다.

 

최근 AutoML 관련 세미나와 연구를 시작하면서 TPOT, Auto-Sklearn, AutoKeras 등

다양한 AutoML 라이브러리를 사용하기 시작했습니다.

 

라이브러리들 중에서는 AutoKeras가 비교적 쉽게 환경을 구성할 수 있어서 6개 정도 라이브러리의 환경을 구축하고

AutoKeras부터 실험을 시작하였습니다.

 

AutoKeras의 공식 문서와 튜토리얼, 라이브러리의 코드는

https://autokeras.com/ 와  https://github.com/keras-team/autokeras 에서 볼 수 있지만, 

개발중인 부분도 있고, 설명이 부족한 부분도 있다는 아쉬움이 있었습니다.

 

AutoML 관련해서 공부도 시작할 겸 AutoML 관련 도서를 찾아봤으나 도서가 꽤 적었습니다.

도서를 더 찾아보던 중 이번에 새로 이 도서가 출간되어서 위시리스트에 담아두었었는데,

운 좋게 이 책을 읽을 수 있는 기회가 생겼습니다.

 

이 도서의 특징은 아래와 같습니다.

1. AutoML의 내용 뿐만 아니라 ML, DL의 기본적인 내용도 포함하고 있다.

2. AutoML을 이용한 각각에 컨셉에 대해 AutoKeras를 활용하여 설명하고 있다.

(AutoKeras에 맞추어 내용이  작성된 것이 아니라는 의미입니다.)

3. AutoML을 이용한 모델 학습 및 생성의 테크닉에 대한 내용을 포함하고 있다.

 

1에 대한 내용으로는...

ML에서 AutoML로 넘어가기 위한 내용(ML의 프로세스, 하이퍼파라미터 튜닝, Challenge 등)과 

ML 프로젝트의 파이프라인(데이터 전처리, 알고리즘 선택 등), DL 요점 정리 등으로 구성되어 있다는 점입니다.

 

2에 대한 내용으로는...

AutoML을 활용한 예시 별 ML 솔루션 생성, 파이프라인 생성을 통한 탐색 공간 조정, 검색 기법, 규모 확장 등에 대해

AutoKeras를 사용하여 내용을 풀어나갑니다.

예를 들어, 자동화된 하이퍼파라미터 튜닝을 위한  AutoML 파이프 생성을 위해 AutoKeras의 AutoML API를 사용합니다.

 

3에 대한 내용으로는...

AutoML을 통한 파이프라인 설계, 파라미터 튜닝, 전처리 자동화, 병렬화 등 다양한 내용을 포함하고 있습니다.

병렬화 같은 경우, 이 도서를 통해 구현해 볼 수 있다는 점이 상당한 메리트 인 것 같습니다.

 

단, 단점이라면 이 도서에는 AutoKeras 라이브러리의 TimeSeriesForecaster 등 몇 가지의 내용이 누락된 것이 있습니다.

아마 개발 중인 내용이라 도서에 포함되지 않은 듯 싶습니다.

 

이 외에도 다양한 내용들과 장점들이 있는 도서이므로, AutoML을 시작하시는 분이라면 강력하게 추천드리고 싶습니다.

하지만 반드시 ML, DL 관련해서 공부를 하시고 읽어보시는 것을 추천드립니다.

 

https://linuxpenguin.tistory.com/entry/%EB%8F%84%EC%84%9C-%EB%A6%AC%EB%B7%B0-%EC%BD%94%EB%94%A9-%EB%87%8C%EB%A5%BC-%EA%B9%A8%EC%9A%B0%EB%8A%94-%ED%8C%8C%EC%9D%B4%EC%8D%AC

 

도서 리뷰 : 코딩 뇌를 깨우는 파이썬

"한빛미디어 활동을 위해서 책을 제공받아 작성된 서평입니다." 이번에 리뷰할 도서는 "코딩 뇌를 깨우는 파이썬" 입니다. 대학원에 입학하면서 파이썬을 단기간에 빠르게 공부했었고, 비전공자

linuxpenguin.tistory.com

 

위 도서와 연계해서 읽으면 가장 좋은 조합이 될 것 같습니다.